Estimation of Offshore Wind Resources in Coastal Waters off Shirahama Using ENVISAT ASAR Images
نویسندگان
چکیده
Offshore wind resource maps for the coastal waters off Shirahama, Japan were made based on 104 images of the Advanced Synthetic Aperture Radar (ASAR) onboard the ENVISAT satellite. Wind speed fields were derived from the SAR images with the geophysical model function CMOD5.N. Mean wind speed and energy density were estimated using the Weibull distribution function. These accuracies were examined in comparison with in situ measurements from the Shirahama offshore platform and the Southwest Wakayama buoy (SW-buoy). Firstly, it was found that the SAR-derived 10 m-height wind speed had a bias of 0.52 m/s and a RMSE of 2.33 m/s at Shirahama. Secondly, it was found that the mean wind speeds estimated from SAR images and the Weibull distribution function were overestimated at both sites. The ratio between SAR-derived and in situ measured mean wind speeds at Shirahama is 1.07, and this value was used for a long-term OPEN ACCESS Remote Sens. 2013, 5 2884 bias correction in the SAR-derived wind speed. Finally, mean wind speed and wind energy density maps at 80 m height were made based on the corrected SAR-derived 10 m-height wind speeds and the ratio U80/U10 calculated from the mesoscale meteorological model WRF.
منابع مشابه
Rain Cells Associated with Atmospheric Fronts over the Ocean Studied by Spaceborne Sar and Weather Radar Data
Spaceborne SAR images acquired over the ocean in conjunction with weather radar images are well suited to study atmospheric fronts in coastal areas. In this paper we confine ourselves to study quasi-stationary atmospheric fronts off the east coast of Taiwan which are located typically 3070 km offshore. These quasistationary atmospheric fronts were first detected on ERS SAR images [5]. In [5] we...
متن کاملComparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters
This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations from two validation sites, Hiratsuka and Shirahama, are used for comparison of the retrieved sea su...
متن کاملError Analysis on ESA's Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model
Nowadays, spaceborne Synthetic Aperture Radar (SAR) has become a powerful tool for providing significant wave height (SWH). Traditionally, validation of SAR derived SWH has been carried out against buoy measurements or model outputs, which only yield an inter-comparison, but not an “absolute” validation. In this study, the triple collocation error model has been introduced in the validation of ...
متن کاملReprint 904 Atmospheric Phenomena Observed over the South China Sea by the Advanced Synthetic Aperture Radar Onboard the Envisat Satellite
Atmospheric phenomena often leave fingerprints on the sea surface, which are detectable by synthetic aperture radar (SAR). Here we present some representative examples of SAR images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the Envisat satellite over the South China Sea (SCS) which show radar signatures of atmospheric gravity waves (AGWs) and of coastal wind fields. On SA...
متن کاملThe Carbon Cycle from North to South along the Galathea 3 Route
Air-sea exchange of CO2 is parameterized along the cruise track of Galathea 3 – a worldwide research expedition. A key parameter is the gas transfer velocity, which varies with wind speed. Wind speeds are measured continuously on board the research vessel. For selected areas, winds are also retrieved from Envisat ASAR images, as the ASAR senses small-scale waves at the sea surface generated by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013